

Q 1.

An α particle enters a constant magnetic field as shown in the diagram. The magnetic field is directed into the screen and has a magnitude $B = 1.20$ T. The initial velocity of the α particle is $v = 5.34 \times 10^5$ m/s directed up the screen.

What is the size of the force experienced by the α particle?

$$F = \underline{\hspace{2cm}} \text{ N}$$

What is the direction of this force?

Select one:

- A. Down the screen
- B. To the right
- C. To the left
- D. Out of the screen
- E. Into the screen
- F. It is zero so it has no direction
- G. Up the screen

What is the magnitude of the acceleration experienced by the α particle?

$$a = \underline{\hspace{2cm}} \text{ ms}^{-2}$$

This force causes the α particle to undergo circular motion. What is the radius of the path it follows?

$$r = \underline{\hspace{2cm}} \text{ m}$$

Q2

A power plant produces energy at a voltage of $V_i = 19266$ V. Before being sent along long distance power lines this electricity is sent through a transformer with 185 turns in the primary coil and 9621 turns in the secondary coil.

What is the voltage of the electricity sent through the long distance wires?

V= _____ v

If the wires have an efficiency of 99.30% and a resistance of 1096Ω , what current flows through these wires?

I= _____ A

How much power do the wires carry?

P= _____ W

Select the true statements from the following list below (More than one may be correct)

Select one or more:

- A. A step down transformer has more turns of wire in the secondary coil than in the primary coil.
- B. A step-up transformer will be needed between the long distance wires and people's homes.
- C. The electricity that travels along the wires is AC (alternating current).
- D. The electricity that travels along the wires is DC (direct current).
- E. An iron core increases the efficiency of a transformer in comparison to an air core.
- F. Less power is lost when electricity is transmitted at high voltage over a long distance than when transmitted at a low voltage.